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DIFFRACTION OF SURFACE WAVES BY THE EDGE OF A WEDGE

UDC 539.25S. Yu. Gurevich and Kh. B. Tolipov

Conditions of propagation of Rayleigh waves over an elastic wedge are considered. Refraction factors
are determined for conversion of the initial wave into secondary volume and surface waves. Calcula-
tion results for the modules of the refraction coefficient agree well with published experimental data.
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Introduction. Diffraction of surface (Rayleigh) waves by a wedge has a wide range of applications (for
example, in converters of surface waves to volume waves, in elimination of false signals in delay circuits, etc).

The mechanism of diffraction of surface waves can be described quite simply. A wave propagating over one
face of a wedge generates an inhomogeneous perturbation of the other face on a length l. The magnitude and
shape of the perturbation depend on the wedge angle and the depth of the Rayleigh wave (see Fig. 1, where W1 is
the incident wave and W2 is the refracted wave). This perturbation is a source of secondary waves, which, on the
boundary of the face, can be mathematically expressed as a spectrum of spatial Fourier harmonics. Harmonics with
wave numbers k = kR describe the Rayleigh wave field, whereas harmonics with wave numbers k < ktr correspond
to the volume wave field (kR and ktr are the wave numbers of the Rayleigh and shear waves, respectively).

1. Formulation of the Problem. We assume that a Rayleigh wave propagating over the first face of
the wedge is a combination of two waves (Fig. 1): a longitudinal wave and a shear wave with the potentials
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ω
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ω
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ω
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Here clong, ctr, and cR are the velocities of the longitudinal, transverse, and Rayleigh waves, respectively, and ω is
the angular rate. The amplitude of the longitudinal potential is set equal to unity. [Below, the time dependence
exp (−iωt) is omitted.]

The time-dependent parts of the elastic fields generated by the incident Rayleigh wave on the other face of
the wedge are described by the equations

∆Φ + k2
longΦ = 0, ∆Ψ + k2

trΨ = 0. (1)

As is known, the stress tensor components are calculated from the equations [1]
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(

2
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)
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2
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.

On the second face of the wedge, the stress tensor components induced by both the incident wave and its
generated secondary waves should be equal to zero. If σ0

zz and σ0
xz are stresses induced by displacements of the

incident Rayleigh wave, the boundary conditions for z = 0 are written as

σzz = −σ0
zz, σxz = −σ0

xz. (2)
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The stresses induced by displacements of the Rayleigh wave on the first face of the wedge are written as [2]

σεη = [P (kR) exp (i
√
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√
k2
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√
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tr − k2
R, and

λ and µ are Lamé constants. We note that on the second face of the wedge, the value and direction of these stresses
vary with variation in the wedge angle and Rayleigh wave depth.

We also assume that the wedge edge, which is the common boundary of the wedge faces, is not perturbed,
and, hence, has no effect on the formation of the field. As is shown below, agreement between experimental and
theoretical curves indicates the validity of the adopted assumption.

By virtue of the inhomogeneity of the Rayleigh wave, the projections of the longitudinal and shear compo-
nents of the incident wave vector onto the x and z axes are written in complex form

k1x(θ) = kR cos θ + i
√
k2

R − k2
long sin θ, k1z(θ) = kR sin θ + i

√
k2

R − k2
long cos θ,

k2x(θ) = kr cos θ + i
√
k2

R − k2
tr sin θ, k2z(θ) = kr sin θ + i

√
k2

R − k2
tr cos θ.

In this case, for the potential field upon decomposition of the perturbing forces onto tangential and normal compo-
nents, the boundary conditions on the second wedge face (z = 0) become

2
∂2Φ
∂x ∂z

+
∂2Ψ
∂x2

− ∂2Ψ
∂z2

= σ1 + σ2, −∂
2Φ
∂x2

− k2
tr

2
Φ +

∂2Ψ
∂x ∂z

= σ3 + σ4,

where

σ1 = [P (k1x) exp (ik1xx) + pQ(k2x) exp (ik2xx)] cos θ,

σ2 = [P (k1z) exp (ik1zz) + pQ(k2z) exp (ik2zz)] sin θ,

σ3 = [R(k1x) exp (ik1xx) + pS(k2x) exp (ik2xx)] cos θ,

σ4 = [R(k1z) exp (ik1zz) + pS(k2z) exp (ik2zz)] sin θ.

2. Construction of a Solution. We write the unknown solution as a Fourier transform in the coordinates x
and z:

A∗j =

∞∫
−∞

Aj(k, x) exp (ikx) dx, C∗j =

∞∫
−∞

Aj(k, z) exp (i(kz + 0.5π)) dz, j = 1, 2,

A1 = Φ, A2 = Ψ.
(3)
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The desired functions A∗j and C∗j are found by substitution of relations (3) into (1) and (2) and subsequent
solution of the ordinary differential equations.

We first consider the solution for the case of tangential forces. Omitting simple computations, we finally
obtain

A∗1 = T1 exp (iqz), C∗1 = T2 exp (iqz),

T0 = 4k2qs− (k2 + s2)2, T1 = (T3 + T4)/T0, T2 = (T5 + T6)/T0, q2 = k2 − k2
long, s2 = k2 − k2

tr,

T3 = [B1(θ)S(kR)−B2(θ)Q(kR)] cos θ, T4 = [B2(θ)S(kR)−B2(θ)Q(kR)] sin θ,

T5 = [B2(θ)P (kR)−B1(θ)R(kR)] cos θ, T6 = [B4(θ)P (kR)−B3(θ)R(kR)] sin θ, (4)

B1 = P (k1x)/(k − k1x)− pQ(k2x)/(k − k2x), B2 = R(k1x)/(k − k1x)− pS(k2x)/(k − k2x),

B3 = P (k1z)/(k − k1z)− pQ(k2z)/(k − k2z), B4 = R(k1z)/(k − k1z)− pS(k2z)/(k − k2z).

3. Calculations of the Field of Rayleigh Wave Displacements. In the inverse Fourier transform, we
continue the integrand analytically into the complex plane. In this plane, the integrand has the branching points

k1,2 = ±iklong, k3,4 = ±iktr

and simple poles

k5,6 = ±ikR.

We choose the branches of the radicals in (4) from the condition arg q = arg s = π/2 for k > 0 and draw sections
from the branching points along the lines Re (q, s) = 0.

To remove the singularities from the real axis (−∞ < k <∞), we assume that there is weak attenuation in
the medium, i.e., that klong and ktr are complex numbers.

We replace the integrals along the real axis by the integral along the path Γ that passes along this axis,
arcs of a circle of infinite radius in the upper half-plane subtended by the real axis, and the banks of cuts passing
through the branching points (Fig. 2). This integration contour was chosen because the integrand satisfies Jordan’s
lemma.

Thus, we can write
∞∫
−∞

F (k) =
∫
Γ

F (k)−
∫
L

F (k)−
∫
L1

F (k)−
∫
L2

F (k)−
∫

γlong

F (k)−
∫
γtr

F (k). (5)

The integral along the path Γ is equal to the sum of residues taken over the poles enclosed in the integration contour.
In the case of tangential forces, the refraction coefficient is given by

V1 = T1

( d
dk

T0(k)
∣∣∣
k=kR

)−1

.
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Applying the above procedure to the refraction coefficient in the case of normal perturbations, we have

V2 = T2

( d
dk

T0(k)
∣∣∣
k=kR

)−1

.

During wave propagation, the general refraction coefficient is written in complex form because the phase
changes with respect to the incident wave:

|Vp|eiϕ = V1 + V2.

Figure 3 shows calculation results for the modules of the refraction coefficients of the Rayleigh wave (curves)
and experimental data (points) of [1].

An analysis shows that for large wedge angles, the tangential components of the perturbing forces make the
major contribution to the scattered acoustic field. With increase in the angle θ, the contribution of these forces
decreases, whereas the effect of the normal component, which monotonically reaches a maximum, increases. We
also note that the experimental points are shifted to the right with respect to the calculated curve. This is explained
by the following. According to the aforesaid, the conversion coefficient of surface waves decreases with variation
in the wedge angle. If the projection of the incident wave vector onto the free surface exceeds the volume wave
vector, the induced longitudinal and transverse waves are inhomogeneous, and their energy is entirely concentrated
in the vicinity of the surface [3]. Consequently, for large wedge angles, the entire energy of the incident wave is
converted to the energy of the refracted inhomogeneous wave, which is then converted to a Rayleigh wave. Thus,
the conversion coefficient begins to decrease after the appearance of the volume wave, which carries the energy into
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the depth of the medium [4]. This occurs when the projection of the incident wave vector onto the other face of
the wedge is smaller than the shear wave vector. This condition is given by the relation θ0 = arccos (ktr/kR). For
the chosen material with Poisson’s ratio σ = 0.34, we have θ0 = 15◦.

4. Calculation of the Displacement Field of Volume Waves. If the contours γlong and γtr are drawn
through the saddle points and the direction of circulation about the integration contour coincides with the direction
of the fastest descent, the last terms in (5) are governing. Omitting simple calculations, we give the following
relations for displacements of longitudinal and transverse waves
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√
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k3
longDlong
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p
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−
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)
,
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exp
(
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π

4

)
.

Here Dlong = 4 sin2 ω cos2 ω
√

sin2 ω − ε2 − (2 sin2 ω − 1)2, Dtr = 4 sin2 ω cos2 ω
√

sin2 ω − ε2 − (2 sin2 ω − ε2)2,
ε = clong/ctr, and ω is the azimuth angle counted from the z axis.

Figure 4 shows the displacement amplitudes of volume waves U normalized by the shear wave amplitude
(curves 1 and 2 refer to longitudinal and transverse waves, respectively). The maximum amplitude of the spatial
waves is reached for a wedge angle β = 180◦ − θ ≈ 120◦. If the refraction process is treated as transition of the
energy of the incident Rayleigh wave to surface and spatial waves, then, according to the energy conservation law,
a decrease in the energy of diffracted surface waves should lead to an increase in the contribution of volume waves.
The experimental data of [1] suggest that for β ≈ 120◦, the refraction coefficients are minimal.

Figure 5 shows the distributions of the amplitudes of longitudinal waves (a) and transverse waves (b) over
the angle ω (curves 1–4 refer to β = 150, 140, 120, and 100◦, respectively). A comparison of the curves in Figs. 4
and 5 shows that for ω close to 30◦, the displacement level is high. A decrease in the wedge angle results in a
change in the wave displacement amplitude and a small shift of the maximum of the curve of the amplitude versus
the angle ω.

In solving the problem of diffraction over a wedge with a small wedge angle, one should take into account
the variation of the incident wave velocity with approach to the wedge angle [5].

The method proposed allows one to study diffraction in the case of more complex diffractors, for example,
those with a flat plane.
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